"b is a glass tube in water and c is a glass tube in mercury. The surface of the water in the tube b is concave, while the surface of the mercury in the tube c is convex." — Hallock, 1905

Capillary Attraction

"b is a glass tube in water and c is a glass tube in mercury. The surface of the water in the tube b…

"A centrifugal pump differing from an ordinary centrifugal pumps in one feature only. The water rises through a suction pipe S, which divides so as to enter the pump wheel at the center on each side. The pump disk or wheel is very similar to a turbine wheel. it is keyed on a shaft driven by a belt on a fast and loose pulley arrangement at P. The water rotating in the pump disk presses outwards, and if the speed is sufficient a continuous flow is maintained through the pump and into the discharge pipe D. The special feature in this pump is that the water, discharged by the pump disk with a whirling velocity of not inconsiderable magnitude, is allowed to continue rotation in a chamber somewhat larger than the pump. The use of this whirlpool chamber was first suggested by Professor James Thomson." — Encyclopedia Britannica, 1893

Centrifugal Pump

"A centrifugal pump differing from an ordinary centrifugal pumps in one feature only. The water rises…

"The sectional form of the guideblade chamber and the wheel and the curves of the wheel vanes and guideblades, when drawn on a plane development of the cylindrical section of the wheel; a, a, a are the sluices for cutting off the water; b, b, are apertures by which the entrance of exit of air is facilitated as the buckets empty and fill." — Encyclopedia Britannica, 1893

Guideblade Chamber

"The sectional form of the guideblade chamber and the wheel and the curves of the wheel vanes and guideblades,…

"The sectional form of the guideblade chamber and the wheel and the curves of the wheel vanes and guideblades, when drawn on a plane development of the cylindrical section of the wheel; a, a, a are the sluices for cutting off the water; b, b, are apertures by which the entrance of exit of air is facilitated as the buckets empty and fill." — Encyclopedia Britannica, 1893

Guideblade Chamber

"The sectional form of the guideblade chamber and the wheel and the curves of the wheel vanes and guideblades,…

"The general sectionl elevation of a Girard turbine, in which the flow is axial. The water, admitted above a horizontal floor, passes down through the annular wheel containing the guide-blades, G, and thence into the revolving wheel WW. The revolving wheel is fixed to a hollow shaft suspended from the pivot p. The solid internal shaft ss is merely a fixed column supporting the pivot. The advantage of this is that the pivot is accessible for lubrication and adjustment. B is the mortise bevel wheel by which the power of the turbine is given off. The sluices are worked by the hand wheel h, which raises them successively, in a way to be described presently. a is the sluice rods." — Encyclopedia Britannica, 1893

Girard Turbine

"The general sectionl elevation of a Girard turbine, in which the flow is axial. The water, admitted…

"Professor James Thomson's inward flow or vortex turbine has been selected as the type of reaction turbines. It is one of the best even in normal conditions of working, and the mode of regulation introduced is decidedly superior to that in most reaction turbines; it might almost be said to be the only mode of regulation which satisfies the conditions of efficient working, and it has been adopted in a modified form in the Leffel turbine, which is now largely used in america. The turbine has suction pipes, which permit the turbine to be placed at any height less than 30 feet above the tail-water level. The water enters the turbine by cast-iron supply pipes at A, and is discharged through two suction pipes S. The water on entering the case distributes itself through a rectangular supply chamber SC, from which it finds its way equally to the four guide-blade passages G. In these passages it acquires a velocity about equal to that due to half the fall, and is directed into the wheel at an angle of about 10 or 12 degrees with the tangent to its circumference. The wheel W receives the water in equal proportions from each guide-blade passage." — Encyclopedia Britannica, 1893

Reaction Turbine

"Professor James Thomson's inward flow or vortex turbine has been selected as the type of reaction turbines.…

"Professor James Thomson's inward flow or vortex turbine has been selected as the type of reaction turbines. It is one of the best even in normal conditions of working, and the mode of regulation introduced is decidedly superior to that in most reaction turbines; it might almost be said to be the only mode of regulation which satisfies the conditions of efficient working, and it has been adopted in a modified form in the Leffel turbine, which is now largely used in america. The turbine has suction pipes, which permit the turbine to be placed at any height less than 30 feet above the tail-water level. The water enters the turbine by cast-iron supply pipes at A, and is discharged through two suction pipes S. The water on entering the case distributes itself through a rectangular supply chamber SC, from which it finds its way equally to the four guide-blade passages G. In these passages it acquires a velocity about equal to that due to half the fall, and is directed into the wheel at an angle of about 10 or 12 degrees with the tangent to its circumference. The wheel W receives the water in equal proportions from each guide-blade passage." — Encyclopedia Britannica, 1893

Reaction Turbine

"Professor James Thomson's inward flow or vortex turbine has been selected as the type of reaction turbines.…

"Professor James Thomson's inward flow or vortex turbine has been selected as the type of reaction turbines. It is one of the best even in normal conditions of working, and the mode of regulation introduced is decidedly superior to that in most reaction turbines; it might almost be said to be the only mode of regulation which satisfies the conditions of efficient working, and it has been adopted in a modified form in the Leffel turbine, which is now largely used in america. The turbine has suction pipes, which permit the turbine to be placed at any height less than 30 feet above the tail-water level. The water enters the turbine by cast-iron supply pipes at A, and is discharged through two suction pipes S. The water on entering the case distributes itself through a rectangular supply chamber SC, from which it finds its way equally to the four guide-blade passages G. In these passages it acquires a velocity about equal to that due to half the fall, and is directed into the wheel at an angle of about 10 or 12 degrees with the tangent to its circumference. The wheel W receives the water in equal proportions from each guide-blade passage." — Encyclopedia Britannica, 1893

Reaction Turbine

"Professor James Thomson's inward flow or vortex turbine has been selected as the type of reaction turbines.…

"Professor James Thomson's inward flow or vortex turbine has been selected as the type of reaction turbines. It is one of the best even in normal conditions of working, and the mode of regulation introduced is decidedly superior to that in most reaction turbines; it might almost be said to be the only mode of regulation which satisfies the conditions of efficient working, and it has been adopted in a modified form in the Leffel turbine, which is now largely used in america. The turbine has suction pipes, which permit the turbine to be placed at any height less than 30 feet above the tail-water level. The water enters the turbine by cast-iron supply pipes at A, and is discharged through two suction pipes S. The water on entering the case distributes itself through a rectangular supply chamber SC, from which it finds its way equally to the four guide-blade passages G. In these passages it acquires a velocity about equal to that due to half the fall, and is directed into the wheel at an angle of about 10 or 12 degrees with the tangent to its circumference. The wheel W receives the water in equal proportions from each guide-blade passage." — Encyclopedia Britannica, 1893

Reaction Turbine

"Professor James Thomson's inward flow or vortex turbine has been selected as the type of reaction turbines.…

"When a water fall ranges between 10 and 70 feet, and the water supply is from 3 to 25 cubic feet per second, it is possible to construct a bucket wheel on which the water acts chiefly by its weight. If the variation of the head-water level does not exceed 2 feet, an overshot wheel may be used. The water is then projected over the summit of the wheel, and falls in a parabolic path into the buckets. With greater variation of head-water level, a pitch-back or high breast wheel is better. The water falls over the top of a sliding sluice into the wheel, on the same side as the head race channel. By adjusting the height of the sluice, the requisite supply is given to the wheel in all positions of the head-water level. The wheel consists of a cast-iron or wrought-iron axle C supporting the weight of the wheel. To this are attached two sets of arms A of wood or iron, which support circular segmental plates termed shrouds B. A cylindrical sole plate dd extends between the shrouds on the inner side. The buckets are formed by wood planks or curved wrought-iron plates extending from shroud to shroud, the back of the buckets being formed by the sole plate." — Encyclopedia Britannica, 1893

Water Wheel

"When a water fall ranges between 10 and 70 feet, and the water supply is from 3 to 25 cubic feet per…