Illustration of two triangles, showing the sine of the sum of two acute angles expressed in terms of the sines and cosines of the angles.

Sum of 2 Acute Angles

Illustration of two triangles, showing the sine of the sum of two acute angles expressed in terms of…

Illustration of one possible outcome (no triangle occurs) when discussing the ambiguous case using the Law of Sines. In this case, side a is less than the height (bsinα).

Ambiguous Case

Illustration of one possible outcome (no triangle occurs) when discussing the ambiguous case using the…

Illustration of one possible outcome (1 triangle occurs) when discussing the ambiguous case using the Law of Sines. In this case, side a is equal to the height (bsinα).

Ambiguous Case

Illustration of one possible outcome (1 triangle occurs) when discussing the ambiguous case using the…

Illustration of one possible outcome (2 triangles occur) when discussing the ambiguous case using the Law of Sines. In this case, side a is greater than the height (bsinα).

Ambiguous Case

Illustration of one possible outcome (2 triangles occur) when discussing the ambiguous case using the…

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane. The circle is divided into four quadrants by the x- and y- axes. The circle can be labeled and used to find the six trigonometric values (sin, cos, tan, cot, sec, csc, cot) at each of the quadrantal angles.

Unit Circle

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane. The…

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with the x- and y-axes indicated. All quadrantal angles are given in radian measure in terms of pi.

Unit Circle Labeled At Quadrantal Angles

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with…

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with the x- and y-axes indicated. All quadrantal angles and angles that have reference angles of 30°, 45°, and 60° are given in radian measure in terms of pi. At each quadrantal angle, the coordinates are given. These coordinates can be used to find the six trigonometric values/ratios. The x-coordinate is the value of cosine at the given angle and the y-coordinate is the value of sine. From those ratios, the other 4 trigonometric values can be calculated.

Unit Circle Labeled At Special Angles

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with…

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with the x- and y-axes indicated. All quadrantal angles and angles that have reference angles of 30°, 45°, and 60° are given in radian measure in terms of pi.

Unit Circle Labeled At Special Angles

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with…

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with the x- and y-axes indicated. At 30° increments, the angles are given in both radian and degree measure. At each angle, the coordinates are given. These coordinates can be used to find the six trigonometric values/ratios. The x-coordinate is the value of cosine at the given angle and the y-coordinate is the value of sine. From those ratios, the other 4 trigonometric values can be calculated.

Unit Circle Labeled In 30° Increments With Values

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with…

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with the x- and y-axes indicated. The circle is marked and labeled in both radians and degrees in 45° increments. At each angle, the coordinates are given. These coordinates can be used to find the six trigonometric values/ratios. The x-coordinate is the value of cosine at the given angle and the y-coordinate is the value of sine. From those ratios, the other 4 trigonometric values can be calculated.

Unit Circle Labeled In 45 ° Increments

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with…

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with the x- and y-axes indicated. At 45° increments, the angles are given in both radian and degree measure. At each quadrantal angle, the coordinates are given. These coordinates can be used to find the six trigonometric values/ratios. The x-coordinate is the value of cosine at the given angle and the y-coordinate is the value of sine. From those ratios, the other 4 trigonometric values can be calculated.

Unit Circle Labeled In 45° Increments With Values

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with…

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with the x- and y-axes indicated. At 45° increments, the angles are given in both radian and degree measure. At each angle, the coordinates are given. These coordinates can be used to find the six trigonometric values/ratios. The x-coordinate is the value of cosine at the given angle and the y-coordinate is the value of sine. From those ratios, the other 4 trigonometric values can be calculated.

Unit Circle Labeled In 45° Increments With Values

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with…

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane. All quadrantal angles are given in radian measure in terms of pi.  At each angle, the coordinates are given. These coordinates can be used to find the six trigonometric values/ratios. The x-coordinate is the value of cosine at the given angle and the y-coordinate is the value of sine. From those ratios, the other 4 trigonometric values can be calculated.

Unit Circle Labeled With Quadrantal Angles And Values

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane. All…

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with the x- and y-axes indicated. All quadrantal angles are given in degree measure. At each angle, the coordinates are given. These coordinates can be used to find the six trigonometric values/ratios. The x-coordinate is the value of cosine at the given angle and the y-coordinate is the value of sine. From those ratios, the other 4 trigonometric values can be calculated.

Unit Circle Labeled With Quadrantal Angles And Values

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with…

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with the x- and y-axes indicated. All quadrantal angles are given in both radian and degree measure. At each angle, the coordinates are given. These coordinates can be used to find the six trigonometric values/ratios. The x-coordinate is the value of cosine at the given angle and the y-coordinate is the value of sine. From those ratios, the other 4 trigonometric values can be calculated.

Unit Circle Labeled With Quadrantal Angles And Values

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with…

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane. At each quadrantal angle, the coordinates are given, but not the angle measure. These coordinates can be used to find the six trigonometric values/ratios. The x-coordinate is the value of cosine at the given angle and the y-coordinate is the value of sine. From those ratios, the other 4 trigonometric values can be calculated.

Unit Circle Labeled With Quadrantal Values

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane. At each…

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with the x- and y-axes indicated. At each quadrantal angle, the coordinates are given, but not the angle measure. These coordinates can be used to find the six trigonometric values/ratios. The x-coordinate is the value of cosine at the given angle and the y-coordinate is the value of sine. From those ratios, the other 4 trigonometric values can be calculated.

Unit Circle Labeled With Quadrantal Values

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with…

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with the x- and y-axes indicated. The circle is marked and labeled in radians. All quadrantal angles and angles that have reference angles of 30°, 45°, and 60° are given in radian measure in terms of pi. At each angle, the coordinates are given. These coordinates can be used to find the six trigonometric values/ratios. The x-coordinate is the value of cosine at the given angle and the y-coordinate is the value of sine. From those ratios, the other 4 trigonometric values can be calculated.

Unit Circle Labeled With Special Angles And Values

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with…

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with the x- and y-axes indicated. The circle is marked and labeled in both radians and degrees at all quadrantal angles and angles that have reference angles of 30°, 45°, and 60°. At each angle, the coordinates are given. These coordinates can be used to find the six trigonometric values/ratios. The x-coordinate is the value of cosine at the given angle and the y-coordinate is the value of sine. From those ratios, the other 4 trigonometric values can be calculated.

Unit Circle Labeled With Special Angles And Values

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with…

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with the x- and y-axes indicated. The circle is marked and labeled in both radians and degrees at all quadrantal angles and angles that have reference angles of 30°, 45°, and 60°. At each angle, the coordinates are given. These coordinates can be used to find the six trigonometric values/ratios. The x-coordinate is the value of cosine at the given angle and the y-coordinate is the value of sine. From those ratios, the other 4 trigonometric values can be calculated.

Unit Circle Labeled With Special Angles And Values

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane with…

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane. All quadrantal angles and angles that have reference angles of 30°, 45°, and 60° are marked from the origin, but no values are given.

Unit Circle Marked At Special Angles

Illustration of a unit circle (circle with a radius of 1) superimposed on the coordinate plane. All…

A curve that is a function and resembles the sine or cosine curve.

Trigonometric Curve

A curve that is a function and resembles the sine or cosine curve.

Illustration that can be used to show that when given an angle, expressed as an inverse function of u, it can be used to find the value of any function of the angle in terms of u.

Angle Expressed As An Inverse Function

Illustration that can be used to show that when given an angle, expressed as an inverse function of…

Illustration of an angle &alpha with the vertex at the center, O, of a circle with radius OB. AC and BD are perpendicular to OB and join B with C. The are of the triangle OBC is less than the are of the sector OBC, and the sector OBC is less than the triangle OBD.

Triangles and Sectors in Quadrant I

Illustration of an angle &alpha with the vertex at the center, O, of a circle with radius OB. AC and…

Illustration of an angle &alpha with the terminal side used to draw a triangle in quadrant I.

Triangle in Quadrant I

Illustration of an angle &alpha with the terminal side used to draw a triangle in quadrant I.

Illustration of an angle with the terminal side used to draw a triangle in quadrant II.

Triangle in Quadrant II

Illustration of an angle with the terminal side used to draw a triangle in quadrant II.

Sine curve plotted from 0 to 2 pi. Graph of y=sin x.

Sine Curve y=sin x

Sine curve plotted from 0 to 2 pi. Graph of y=sin x.

Sine curves of varying frequency and amplitude plotted from 0 to 2 pi. Graph of y= sin θ, y= 1/2 sin θ, y=2 sin θ, y= 2 sin 3θ

Sine Curves y= sin Ǝ, y= 1/2 sin Ǝ, y=2 sin Ǝ, y= 2 sin 3Ǝ

Sine curves of varying frequency and amplitude plotted from 0 to 2 pi. Graph of y= sin θ, y= 1/2…

Sine curves of varying frequency plotted from 0 to 2 pi. Graph of y= sin t, y= r sin1/2t, y=r sin 2t.

Sine Curves y= sin t, y= r sin1/2t, y= r sin 2t

Sine curves of varying frequency plotted from 0 to 2 pi. Graph of y= sin t, y= r sin1/2t, y=r sin 2t.

Illustration two types of triangles that can be used to model the law of sines. "In a plane triangle any two sides are to each other as the sines of the opposite angles."

Law of Sines

Illustration two types of triangles that can be used to model the law of sines. "In a plane triangle…

A cartoon of a snake feeding a piece of cake to two children. A sign over the cake reads: The Forbidden Cake.

Snake Giving Two Children Cake

A cartoon of a snake feeding a piece of cake to two children. A sign over the cake reads: The Forbidden…

"The relief pictures an ancient Italian sacrifice of a bull, a ram, and a boar, offered to Mars to secure purification from sin. Note the sacred laurel trees, the two altars, and the officiating magistrate, whose head is covered with the toga. He is sprinkling incense from a box held by an attendant. Another attendant carries a ewer with the libation. In the rear is the sacrificer with his ax."—Webster, 1913

Suovetaurilia

"The relief pictures an ancient Italian sacrifice of a bull, a ram, and a boar, offered to Mars to secure…

Illustration showing ambiguous case when the solution is not a triangle using law of sines.

Ambiguous Case of Law of Sines Triangle

Illustration showing ambiguous case when the solution is not a triangle using law of sines.

Trigonometric reference triangles/angles drawn for 60 degree reference angel in quadrants I and II.

Trigonometric Reference Triangles/Angles (60 degrees) Drawn in Quadrants

Trigonometric reference triangles/angles drawn for 60 degree reference angel in quadrants I and II.

Inclined plane forming right triangle showing the velocity of a body sliding a distance,s, down a smooth horizontal plane.

Inclined Plane Forming Right Triangle

Inclined plane forming right triangle showing the velocity of a body sliding a distance,s, down a smooth…

Triangle ABC and triangle ABC'. This illustration could be used to demonstrate the law of sines.

Triangles ABC and ABC'

Triangle ABC and triangle ABC'. This illustration could be used to demonstrate the law of sines.

Trigonometric reference triangles/angles drawn for reference angel in quadrants I and II. This illustration could be used to find trig ratios.

Trigonometric Reference Triangles/Angles Drawn in Quadrants

Trigonometric reference triangles/angles drawn for reference angel in quadrants I and II. This illustration…