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The Theory of Numerical Equations1 concerns itself first with the location of 
the roots, and then with their approximation. Neither problem is new, but the first 
noteworthy contribution to the former in the nineteenth century was Budan’s (1807). 
Fourier’s work was undertaken at about the same time, but appeared posthumously 
in 1831. All processes were, however, exceedingly cumbersome until Sturm (1829) 
communicated to the French Academy the famous theorem which bears his name and 
which constitutes one of the most brilliant discoveries of algebraic analysis.

The Approximation of the Roots, once they are located, can be made by several 
processes. Newton (1711), for example, gave a method which Fourier perfected; and 
Lagrange (1767) discovered an ingenious way of expressing the root as a continued 
fraction, a process which Vincent (1836) elaborated. It was, however, reserved for 
Horner (1819) to suggest the most practical method yet known, the one now commonly 
used. With Horner and Sturm this branch practically closes. The calculation of the 
imaginary roots by approximation is still an open field.

The Fundamental Theorem2 that every numerical equation has a root was generally 
assumed until the latter part of the eighteenth century. D’Alembert (1746) gave a 
demonstration, as did Lagrange (1772), Laplace (1795), Gauss (1799) and Argand 
(1806). The general theorem that every algebraic equation of the nth degree has exactly 
n roots and no more follows as a special case of Cauchy’s proposition (1831) as to the 
number of roots within a given contour. Proofs are also due to Gauss, Serret, Clifford 
(1876), Malet (1878), and many others.

The Impossibility of Expressing the Roots of an equation as algebraic functions of 
the coefficients when the degree exceeds 4 was anticipated by Gauss and announced 
by Ruffini, and the belief in the fact became strengthened by the failure of Lagrange’s 
methods for these cases. But the first strict proof is due to Abel, whose early death cut 
short his labors in this and other fields.

The Quintic Equation has naturally been an object of special study. Lagrange 
showed that its solution depends on that of a sextic, “Lagrange’s resolvent sextic,” and 
Malfatti and Vandermonde investigated the construction of resolvents. The resolvent 
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sextic was somewhat simplified by Cockle and Harley (1858-59) and by Cayley 
(1861), but Kronecker (1858) was the first to establish a resolvent by which a real 
simplification was effected. The transformation of the general quintic into the trinomial 
form x5 + ax + b = 0 by the extraction of square and cube roots only, was first shown 
to be possible by Bring (1786) and independently by Jerrard3 (1834). Hermite (1858) 
actually effected this reduction, by means of Tschirnhausen’s theorem, in connection 
with his solution by elliptic functions.

The Modern Theory of Equations may be said to date from Abel and Galois. The 
latter’s special memoir on the subject, not published until 1846, fifteen years after 
his death, placed the theory on a definite base. To him is due the discovery that to 
each equation corresponds a group of substitutions (the “group of the equation”) in 
which are reflected its essential characteristics.4 Galois’s untimely death left without 
sufficient demonstration several important propositions, a gap which Betti (1852) 
has filled. Jordan, Hermite, and Kronecker were also among the earlier ones to add 
to the theory. Just prior to Galois’s researches Abel (1824), proceeding from the fact 
that a rational function of five letters having less than five values cannot have more 
than two, showed that the roots of a general quintic equation cannot be expressed in 
terms of its coefficients by means of radicals. He then investigated special forms of 
quintic equations which admit of solution by the extraction of a finite number of roots. 
Hermite, Sylvester, and Brioschi have applied the invariant theory of binary forms to 
the same subject.

From the point of view of the group the solution by radicals, formerly the goal 
of the algebraist, now appears as a single link in a long chain of questions relative to 
the transformation of irrationals and to their classification. Klein (1884) has handled 
the whole subject of the quintic equation in a simple manner by introducing the 
icosahedron equation as the normal form, and has shown that the method can be 
generalized so as to embrace the whole theory of higher equations.5 He and Gordan 
(from 1879) have attacked those equations of the sixth and seventh degrees which have 
a Galois group of 168 substitutions, Gordan performing the reduction of the equation of 
the seventh degree to the ternary problem. Klein (1888) has shown that the equation of 
the twenty-seventh degree occurring in the theory of cubic surfaces can be reduced to 
a normal problem in four variables, and Burkhardt (1893) has performed the reduction, 
the quaternary groups involved having been discussed by Maschke (from 1887).

Thus the attempt to solve the quintic equation by means of radicals has given 
place to their treatment by transcendents. Hermite (1858) has shown the possibility of 
the solution, by the use of elliptic functions, of any Bring quintic, and hence of any 
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equation of the fifth degree. Kronecker (1858), working from a different standpoint, 
has reached the same results, and his method has since been simplified by Brioschi. 
More recently Kronecker, Gordan, Kiepert, and Klein, have contributed to the same 
subject, and the sextic equation has been attacked by Maschke and Brioschi through the 
medium of hyperelliptic functions.

Binomial Equations, reducible to the form xn – 1 = 0, admit of ready solution by 
the familiar trigonometric formula x = cos 2kπ/n + i sin 2kπ/n; but it was reserved for 
Gauss (1801) to show that an algebraic solution is possible. Lagrange (1808) extended 
the theory, and its application to geometry is one of the leading additions of the century. 
Abel, generalizing Gauss’s results, contributed the important theorem that if two roots 
of an irreducible equation are so connected that the one can be expressed rationally in 
terms of the other, the equation yields to radicals if the degree is prime and otherwise 
depends on the solution of lower equations. The binomial equation, or rather the 
equation , is one of this class considered by Abel, and hence called (by Kronecker) 
Abelian Equations. The binomial equation has been treated notably by Richelot (1832), 
Jacobi (1837), Eisenstein (1844, 1850), Cayley (1851), and Kronecker (1854), and 
is the subject of a treatise by Bachmann (1872). Among the most recent writers on 
Abelian equations is Pellet (1891).

Certain special equations of importance in geometry have been the subject of study 
by Hesse, Steiner, Cayley, Clebsch, Salmon, and Kummer. Such are equations of the 
ninth degree determining the points of inflection of a curve of the third degree, and of 
the twenty-seventh degree determining the points in which a curve of the third degree 
can have contact of the fifth order with a conic.

Symmetric Functions of the coefficients, and those which remain unchanged 
through some or all of the permutations of the roots, are subjects of great importance 
in the present theory. The first formulas for the computation of the symmetric 
functions of the roots of an equation seem to have been worked out by Newton, 
although Girard (1629) had given, without proof, a formula for the power sum. In 
the eighteenth century Lagrange (1768) and Waring (1770, 1782) contributed to the 
theory, but the first tables, reaching to the tenth degree, appeared in 1809 in the Meyer-
Hirsch Aufgabensammlung. In Cauchy’s celebrated memoir on determinants (1812) 
the subject began to assume new prominence, and both he and Gauss (1816) made 
numerous and valuable contributions to the theory. It is, however, since the discoveries 
by Galois that the subject has become one of great importance. Cayley (1857) has 
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given simple rules for the degree and weight of symmetric functions, and he and 
Brioschi have simplified the computation of tables.

Methods of Elimination and of finding the resultant (Bezout) or eliminant (De 
Morgan) occupied a number of eighteenth-century algebraists, prominent among them 
being Euler (1748), whose method, based on symmetric functions, was improved 
by Cramer (1750) and Bezout (1764). The leading steps in the development are 
represented by Lagrange (1770-71), Jacobi, Sylvester (1840), Cayley (1848, 1857), 
Hesse (1843, 1859), Bruno (1859), and Katter (1876). Sylvester’s dialytic method 
appeared in 1841, and to him is also due (1851) the name and a portion of the theory 
of the discriminant. Among recent writers on the general theory may be mentioned 
Burnside and Pellet (from 1887).
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